Purpose: Children are sometimes examined with Computed Tomography protocols designed for adults, leading to radiation doses higher than necessary. Lack of optimisation could lead to image quality higher than what is needed for diagnostic purposes with associated high doses to patients. Optimising the protocols for paediatric head trauma CT imaging will reduce radiation dose. Objective: The study aimed to optimise radiation dose and assess the image quality for a set of protocols by evaluating noise, a contrast to noise ratio, modulation transfer function and noise power spectrum. Methods: Somaton Sensation 64 was used to scan the head of an anthropomorphic phantom with a set of protocols. ImageJ software was used to analyse the paediatric head image from the scanner. IMPACTSCAN dosimeter software was used to evaluate the radiation dose to the various organs in the head. MATLAB was used to analyse the Modulation Transfer Function and the Noise Power. Results: The estimated Computed Tomography Dose Index volume (CTDIvol) increased with increasing tube current and tube voltage. The high pitch of 0.9 gave a lower dose than the 0.5 pitch. The eye lens received the highest radiation dose (39.2 mGy) whiles the thyroid received the least radiation dose (13.7 mGy). There was an increase in noise (62.46) when the H60 kernel was used and a lower noise (8.829) was noticed when the H30 kernel was used. Conclusion: The results obtained show that the H30 kernel (smooth kernel) gave higher values for noise and contrast to noise ratio (CNR) than the H60 kernel (sharp kernel). The H60 kernel produced high values for the modulation transfer function (MTF) and noise power spectrum (NPS). The eye lens received the highest radiation dose.
Loading....